合成孔径声纳(SAS)图像对于多种应用至关重要,包括目标识别和环境分割。深度学习模型在SAS分析中取得了很大的成功。但是,这些方法提取的功能可能不适合捕获某些纹理信息。为了解决这个问题,我们介绍了直方图在SAS图像上的新应用。在深度学习模型中添加直方图层,通过合并合成和现实世界数据集的统计纹理信息来改善性能。
translated by 谷歌翻译
用合成孔径声纳的海底纹理观察依赖于几个因素。在这项工作中,我们专注于各向同性和各向异性纹理的收集几何形状。收集几何形状的低放牧角度,与声纳路径相对于各向异性纹理的方向相结合,对图像对齐和其他多视图场景了解框架构成了重大挑战。我们之前建议使用估计的海底缓解捕获的功能来改善现场了解。虽然已经开发了几种方法来通过强度估计海底浮雕,但文献中没有任何大规模的研究。此外,Coregristered海底浮雕地图和声纳图像的数据集是不存在的,以了解这个域名翻译。我们通过从两个独特的Sonar数据仿真技术制作包含含有共记高的海底浮雕和强度图的大型模拟数据集来解决这些问题。我们应用三种类型的模型,随着复杂性的不同,将强度图像转化为海底救济:高斯马尔可夫随机场方法(GMRF),条件生成对抗网络(Cgan)和Unet架构。使用L1误差将方法进行比较。此外,还显示了对模拟和真实SAS图像的预测。最后,在与使用强度相比,将模型与手动对齐的SAS图像的两个数据集进行比较。我们的综合实验表明,拟议的UNET架构优于MGRF和PIX2PIX CGAN模型对模拟和真实SAS图像的海底救济估算。
translated by 谷歌翻译
由于对社会,经济学和环境的巨大影响,智能电网(SG)的研究和发展引起了学术界,行业和政府的重视。确保SG是一个很大的重大挑战,因为增加了通信网络以协助物理过程控制,将它们暴露于各种网络威胁。除了使用假数据喷射(FDI)技术改变测量值的攻击之外,通信网络上的攻击可能通过拦截消息来破坏电力系统的实时操作,或者通过泛洪与不必要的数据泛换通信信道。解决这些攻击需要跨层方法。在本文中,呈现了一种交叉层策略,称为具有自适应统计(CECD-AS)的交叉层集合RORDET,其集成了故障的SG测量数据的检测以及不一致的网络到达时间和传输延迟,以便更可靠地进行传输延迟准确的异常检测和攻击解释。数值结果表明,与当前方法相比,CECD-AS可以检测多个错误数据喷射,拒绝服务(MITM)攻击中的拒绝服务(MITM)攻击的攻击(MITM)攻击。基于传统的基于物理的状态估计,具有自适应统计策略和基于机器学习分类的检测方案的集合RORDET。
translated by 谷歌翻译
在这项工作中,我们提出了一种新的损失,以提高特征可怜和分类性能。通过自适应余弦/相干估计(ACE)的动机,我们的提出方法包括由人工神经网络本质学学习的角度信息。我们的学习ACE(蕾丝)将数据转换为新的“白细胞”空间,可提高级别的间可分离性和级别的紧凑性。我们将我们的蕾丝与基于艺术艺术品的替代最终的和功能正则化方法进行比较。我们的研究结果表明,该方法可以作为交叉熵和角度软墨水方法的可行替代方案。我们的代码是公开的:https://github.com/gatorsense/lace。
translated by 谷歌翻译
Determining and predicting reservoir formation properties for newly drilled wells represents a significant challenge. One of the variations of these properties evaluation is well-interval similarity. Many methodologies for similarity learning exist: from rule-based approaches to deep neural networks. Recently, articles adopted, e.g. recurrent neural networks to build a similarity model as we deal with sequential data. Such an approach suffers from short-term memory, as it pays more attention to the end of a sequence. Neural network with Transformer architecture instead cast their attention over all sequences to make a decision. To make them more efficient in terms of computational time, we introduce a limited attention mechanism similar to Informer and Performer architectures. We conduct experiments on open datasets with more than 20 wells making our experiments reliable and suitable for industrial usage. The best results were obtained with our adaptation of the Informer variant of Transformer with ROC AUC 0.982. It outperforms classical approaches with ROC AUC 0.824, Recurrent neural networks with ROC AUC 0.934 and straightforward usage of Transformers with ROC AUC 0.961.
translated by 谷歌翻译
This article presents a dataset of 10,917 news articles with hierarchical news categories collected between January 1st 2019, and December 31st 2019. We manually labelled the articles based on a hierarchical taxonomy with 17 first-level and 109 second-level categories. This dataset can be used to train machine learning models for automatically classifying news articles by topic. This dataset can be helpful for researchers working on news structuring, classification, and predicting future events based on released news.
translated by 谷歌翻译
Generic Object Tracking (GOT) is the problem of tracking target objects, specified by bounding boxes in the first frame of a video. While the task has received much attention in the last decades, researchers have almost exclusively focused on the single object setting. Multi-object GOT benefits from a wider applicability, rendering it more attractive in real-world applications. We attribute the lack of research interest into this problem to the absence of suitable benchmarks. In this work, we introduce a new large-scale GOT benchmark, LaGOT, containing multiple annotated target objects per sequence. Our benchmark allows researchers to tackle key remaining challenges in GOT, aiming to increase robustness and reduce computation through joint tracking of multiple objects simultaneously. Furthermore, we propose a Transformer-based GOT tracker TaMOS capable of joint processing of multiple objects through shared computation. TaMOs achieves a 4x faster run-time in case of 10 concurrent objects compared to tracking each object independently and outperforms existing single object trackers on our new benchmark. Finally, TaMOs achieves highly competitive results on single-object GOT datasets, setting a new state-of-the-art on TrackingNet with a success rate AUC of 84.4%. Our benchmark, code, and trained models will be made publicly available.
translated by 谷歌翻译
Legal Prompt Engineering (LPE) or Legal Prompting is a process to guide and assist a large language model (LLM) with performing a natural legal language processing (NLLP) skill. Our goal is to use LPE with LLMs over long legal documents for the Legal Judgement Prediction (LJP) task. We investigate the performance of zero-shot LPE for given facts in case-texts from the European Court of Human Rights (in English) and the Federal Supreme Court of Switzerland (in German, French and Italian). Our results show that zero-shot LPE is better compared to the baselines, but it still falls short compared to current state of the art supervised approaches. Nevertheless, the results are important, since there was 1) no explicit domain-specific data used - so we show that the transfer to the legal domain is possible for general-purpose LLMs, and 2) the LLMs where directly applied without any further training or fine-tuning - which in turn saves immensely in terms of additional computational costs.
translated by 谷歌翻译
Multilingual Neural Machine Translation (MNMT) models leverage many language pairs during training to improve translation quality for low-resource languages by transferring knowledge from high-resource languages. We study the quality of a domain-adapted MNMT model in the medical domain for English-Romanian with automatic metrics and a human error typology annotation which includes terminology-specific error categories. We compare the out-of-domain MNMT with the in-domain adapted MNMT. The in-domain MNMT model outperforms the out-of-domain MNMT in all measured automatic metrics and produces fewer terminology errors.
translated by 谷歌翻译
IMPORTANCE: An interpretable machine learning model can provide faithful explanations of each prediction and yet maintain higher performance than its black box counterpart. OBJECTIVE: To design an interpretable machine learning model which accurately predicts EEG protopatterns while providing an explanation of its predictions with assistance of a specialized GUI. To map the cEEG latent features to a 2D space in order to visualize the ictal-interictal-injury continuum and gain insight into its high-dimensional structure. DESIGN, SETTING, AND PARTICIPANTS: 50,697 50-second cEEG samples from 2,711 ICU patients collected between July 2006 and March 2020 at Massachusetts General Hospital. Samples were labeled as one of 6 EEG activities by domain experts, with 124 different experts providing annotations. MAIN OUTCOMES AND MEASURES: Our neural network is interpretable because it uses case-based reasoning: it compares a new EEG reading to a set of learned prototypical EEG samples from the training dataset. Interpretability was measured with task-specific neighborhood agreement statistics. Discriminatory performance was evaluated with AUROC and AUPRC. RESULTS: The model achieves AUROCs of 0.87, 0.93, 0.96, 0.92, 0.93, 0.80 for classes Seizure, LPD, GPD, LRDA, GRDA, Other respectively. This performance is statistically significantly higher than that of the corresponding uninterpretable (black box) model with p<0.0001. Videos of the ictal-interictal-injury continuum are provided. CONCLUSION AND RELEVANCE: Our interpretable model and GUI can act as a reference for practitioners who work with cEEG patterns. We can now better understand the relationships between different types of cEEG patterns. In the future, this system may allow for targeted intervention and training in clinical settings. It could also be used for re-confirming or providing additional information for diagnostics.
translated by 谷歌翻译